A Novel Compressed Sensing Scheme for Photoacoustic Tomography
نویسندگان
چکیده
منابع مشابه
A Novel Compressed Sensing Scheme for Photoacoustic Tomography
Speeding up the data acquisition is one of the central aims to advance tomographic imaging. On the one hand, this reduces motion artifacts due to undesired movements, and on the other hand this decreases the examination time for the patient. In this article, we propose a new scheme for speeding up the data collection process in photoacoustic tomography. Our proposal is based on compressed sensi...
متن کاملCompressed sensing and sparsity in photoacoustic tomography
Increasing the imaging speed is a central aim in photoacoustic tomography. This issue is especially important in the case of sequential scanning approaches as applied for most existing optical detection schemes. In this work we address this issue using techniques of compressed sensing. We demonstrate, that the number of measurements can significantly be reduced by allowing general linear measur...
متن کاملCompressed sensing in photoacoustic tomography in vivo.
The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapt compressed sensing (CS) for the reconstruction in PACT. CS-based PACT is implemented as a nonli...
متن کاملIn vivo optical-resolution photoacoustic computed tomography with compressed sensing.
Optical-resolution photoacoustic microscopy is becoming a powerful research tool for studying microcirculation in vivo. Moreover, ultrasonic-array-based optical-resolution photoacoustic computed tomography (OR-PACT), providing comparable resolution at an improved speed, has opened up new opportunities for studying microvascular dynamics. In this Letter, we have developed a compressed sensing wi...
متن کاملAccelerated high-resolution photoacoustic tomography via compressed sensing.
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Mathematics
سال: 2015
ISSN: 0036-1399,1095-712X
DOI: 10.1137/141001408